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Abstract: We present an implementation and laboratory tests of a winner takes all (WTA) 
artificial neural network (NN) on two microcontrollers (µC) with the ARM Cortex 
M3 and the AVR cores. The prospective application of this device is in wireless 
body sensor network (WBSN) in an on-line analysis of electrocardiograph (ECG) 
and electromyograph (EMG) biomedical signals. The proposed device will be used 
as a base station in the WBSN, acquiring and analysing the signals from the sensors  
placed on the human body.  The proposed system is  equiped with an analog-to-
digital converter (ADC), and allows for multi-channel acquisition of analog signals,  
preprocessing (filtering) and further analysis.
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1. INTRODUCTION  

Artificial Neural Networks (NN) are commonly used 
in tasks requiring processing, classification and recogni-
ze of "difficult" signals, such as, for example, heuristic 
data and non-stationary signals. They find applications in 
medical  health  care,  telecommunication,  and  various 
other electrical  engineering areas.  In  literature one can 
find various implementation techniques of various NNs, 
both the software- and the hardware-based [1, 2, 3]. 

Taking into account such criteria as energy consump-
tion and calculation capacity,  fully-custom designed net-
works  are  the  most  efficient  solutions.  Such  networks 
enable parallel data processing, and thus are faster than 
their  software-based  counterparts.  The  circuits,  which 
are designed on transistor level, enable a good matching 
of  the internal  structure  to  a  given task,  and therefore 
usually consume much less energy  [4, 5].  On the other 
hand, they require relatively complex and time consum-
ing  design  process,  which  is  expensive,  especially  in 
case of realization of short series.

In  this  paper  we present  an  implementation  of  the 
Winner  Takes  All  (WTA)  NN  using  an  alternative 
approach that is based on microcontrollers (µCs). Such 

networks  are  significantly  less  efficient  than  those 
realized in the full-custom style, but are up to ten times 
more efficient compared to similar NNs realized on PC 
[5]. Using the Eagle 5.6 environment,  we developed a 
prototype testing board with two µCs, namely the 8-bits 
AVR and  the  32-bits  ARM CortexM3.  The  device  is 
described in details in Section 3. 

The motivation behind the realization of this device 
was  manifold.  The  main  purpose  was  to  realize  a 
flexible, programmable and convenient to use system for 
the application in various medical healthcare areas. The 
device is  to  be used as  a  base station in  the Wireless 
Body  Sensor  Network  (WBSN)  for  an  on-line 
monitoring of patients. For this purpose, future versions 
will  be  equipped  with  the  wireless  I/O  module.  The 
WBSNs become more and more popular in recent years 
and there promises to be more interest in the future [6]. 

An interesting aspect is using the NNs implemented 
in WBSNs in the analysis of various biomedical signals, 
such as electrocardiograph (ECG) and electromyograph 
(EMG) signals. In [7] it was demonstrated that NNs are a 
very efficient tool in the analysis of such signals. Three 
different  learning  rules  were  investigated,  specifically 
the  self  organizing  map  (SOM),  the  back-propagation 
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(BP)  NN  and  the  learning  vector  quantization  (LVQ) 
NN. The unsupervised SOM algorithm was shown to be 
more efficient than, for example, the BP NN, although 
the learning process takes more time in this case.

The  other  reason  behind  realization  of  this  device 
was to build a system that could be used as a hardware 
model  of  the  analog  and  mixed  (analog-digital)  WTA 
NNs realized by the authors as Application Specific Inte-
grated Circuits (ASIC) in the CMOS technology [5, 8]. 
As mentioned above, the overall design process of such 
networks is expensive and time consuming. The authors' 
experience shows that modeling of such chips using only 
Matlab  or  C++  is  not  always  sufficient,  especially  in 
case when analog signals are to be processed and ana-
lysed. For this reason the proposed device is equipped 
with the ADC and the DACs that enable multi-channel 
processing  of  analog signals  in  the real  time.  Transis-
tor-level designed NNs can be tested using the Spice en-
vironment, but simulations of even relatively short times 
require hours on a typical PC, which is the bottleneck in 
optimization of such chips. The proposed platform en-
ables fast reprogramming and thus optimization of even 
large WTA NN in a short time. 

It  is  worth  mentioning  that  fully-custom designed 
NNs enable realization of the WBSN of different types. 
In the first approach, in which the NN is implemented in 
the base station, the sensors can be very simple.  Their 
role is reduced in this case to data collection, and some 
preprocessing, such as data compression. In an alterna-
tive approach the ultra-low power unsupervised NNs can 
be used directly in particular sensors. In this case data 
exchange with the base station is reduced to the neces-
sary  minimum.  This  approach  enables  significant  in-
creasing the battery life time, as the communication usu-
ally consumes more than 90% of total energy consumed 
in such systems.

In the literature one can find the attempts to realize 
various NNs using µCs and microprocessors  (µPs)  [9, 
10]. An example realization by use of the Single Instruc-
tion Multiple Data (SIMD) processor has been described 
in [9], where different methods of detection of the win-
ning neuron were studied. In general, the SIMD µPs are 
suitable for large and fast networks with even hundreds 
neurons. The main reason for this is relatively large pow-
er dissipation, as well as large cost of a single device. 
Another  realization of a  multi-layer  network using the 
PIC18F45J10 µC has been described in [10]. In this case 
the maximum of 256 weights (connections) can be real-
ized, which in practice means about 50 neurons. 

NNs realized on µCs find the application in different 
areas, mostly in control and in diagnostics. For example, 
a device described in [11] has been used as an intelligent 
wireless  electronic  nose  node  (WENN)  used  in 
classification and quantification of binary gas mixtures 
NH3 and H2S. A NN described in [12] has been used to 
control temperature of a furnace. 

A very important aspect in hardware realized NNs is 
the complexity of the learning algorithm. It has the influ-
ence on the power dissipation and achievable data rate. 

Microcontrollers are rather suitable for simple arithmetic 
operations. For example, the unsupervised trained WTA 
NN requires only simple operations, such as multiplica-
tions, summations and subtractions. For the comparison, 
the NN described in [10] requires  tanh activation func-
tions, relatively more difficult in hardware realization. 

2. BASICS OF THE WTA NETWORKS 

In  this  section we outline  the  fundamentals  of  the 
WTA learning algorithm. WTA NN [13] belongs to the 
group of networks trained without the supervision, mak-
ing them relatively fast, which is important in applica-
tions such as telecommunications [14, 15]. The training 
process relies on presenting the NN with learning pat-
terns,  X, in order to make the neurons’ weight vectors, 
W,  resemble  presented  data.  For  each  new pattern  the 
network calculates the distance between the X and the W 
vectors in all neurons. Different measures of the similari-
ty between both vectors can be found in the literature. 
One of them is the Euclidean distance (L2) defined as:

d X ,W i=∑l=1

n

x l−w il 
2 (1)

Another popular measure is the Manhattan (L1) dis-
tance, defined as: 

d X ,W i=∑
l=1

n

∣x l−wil∣                 (2)

In  the L1 measure the squaring and rooting opera-
tions have been omitted, which allows for simplification 
of  the  learning  algorithm.  Both  these  measures  have 
been implemented in the proposed device for the com-
parison. The adaptation of the winning neuron in the  tth 

iteration is performed in accordance with the formula:

W it1=W it ⋅X t −W it     (3)

where  η is  the  learning  rate.  Other  neurons  in  the 
network that lose the competition remain unchanged.

A  significant  problem  encountered  in  the  WTA 
networks are the, so-called, dead neurons i.e. the neurons 
that take part in the competition but never win and their 
weights remain unchanged. One of the reasons for this 
problem are badly selected initial values of the weights 
[16]. Such neurons reduce the number of classes that can 
be  discriminated,  thus  increasing  the  mapping 
(quantization)  error  of  the  network.  For  this  reason 
reducing  the  number  of  dead  neurons  is  an  important 
objective. One of the very efficient methods in this task 
is using the conscience mechanism [5,17]. Its role is to 
increase the likelihood of winning the competition for all 
neurons  in  the  NN.  For  this  reason,  the  conscience 
mechanism  has  been  implemented  in  the  proposed 
device. This mechanism can be described by:

d cons X ,W =d L1/L2 normX ,W Lcount⋅K    (4)



Figure 1. The proposed testing board with the programmable 
WTA NN based on two microcontrollers

   

Figure 2. The proposed testing board of the programmable 
WTA neural network based on microcontrollers

The real distance dL1/L2(X, W) between the W and the 
X vectors  is  increased  by  adding  a  signal  that  is 
proportional  to  the  number  of  the  wins  for  a  given 
neuron.  Finally,  in detection of  the winning neurons a 
modified  distance  dcons(X,  W)  is  being  used.  The  Lcount 

parameter is the number of the wins of a given neuron. 
The  K coefficient  is  the  gain  factor  that  allows  for 
controlling  and  optimizing  the  learning  process  by 
adjusting the strength of the conscience mechanism. 

3. THE PROPOSED DEVICE 

An overview of the realized system with two µCs is 
shown in Fig. 1, while the layout and the photograph of 
the  testing  board  shown in  Fig.  2.  It  is  composed  of 
several  important  blocks.  One of them is the interface 
block, mentioned in Section 1,  composed of  the ADC 
and  the  DAC  circuits  that  enable  multi-channel  data 
processing. A single 4-channel THS1206 ADC and three 
4-channel AD7305 DACs have been used. This 12-bits 
ADC converts the analog input learning signals X, while 
the DACs enable a direct observation of selected neuron 
weights,  w,  on the oscilloscope. A direct observation is 
possible,  for  example,  for  3  inputs  and  4  outputs 
corresponding to 12 neuron weights. The higher number 
of the weights can be implemented, but in this case only 
selected  weights  can  be  observed  directly,  while  the 
others can be viewed on PC. The interface block enables 
sending all weights, as digital signals to PC for a more 
detailed analysis. Digital signals are acquired throughout 
the USB and RS232 serial ports. The serial ports allow 
also for acquiring the learning signals X (in digital form), 
the  calculated  distances,  d,  between  the  X and  the  W 
vectors,  the numbers of the wins of particular  neurons 
and  the  quantization  error  for  detailed  analysis  of  the 
network performance. The numbers of the wins enable 
creation  of  statistics,  which  is  very  useful  in  many 
applications. 

The overall device has been realized in a manner to 
enable on-line measuring of the power dissipation, sepa-
rately for the ADC, the DAC blocks and for both µCs.  

The core blocks are the µCs that are programmed by 
the use of the ISP/JTAG interfaces. The µCs can operate 
in different modes. In the first mode particular µCs work 
separately, performing the learning algorithm of the NN. 
In this case only one µC is being used, while the second 
one is turned off to reduce the power dissipation. This 
mode  enables  a  direct  comparison  of  both  devices  in 
terms of the attainable data rate and power dissipation. In 
this mode the active µC receives data from the ADC or 
directly the external  digital  signals.  In  the second case 
the ADC is turned-off to save energy.

Figure 3.  Cascaded discrete wavelet transform (DWT) realized 
using the QMF filter bank with the FIR filters

In  the  second  mode,  which  is  currently  tested  and 
optimized,  both  µCs  are  used  at  the  same  time, 
connected  in series. The first µC (ARM) is in this case 
used  as  a  signal  preprocessing  /  conditioning  block, 
while  the  second  one  (AVR)  performs  the  learning 
algorithm.  Using  the  ARM  µC  as  a  first  block  is 
necessary,  as  data  preprocessing  is  usually  more 



complex than the subsequent WTA learning algorithm, 
requiring  more  computing  resources.  The  used  Cortex 
µC is a 32-bits device, which is more convenient in data 
preprocessing (mostly filtering) than the 8-bits AVR µC.

Table 1. An example realization of the wavelet Daubechies 
(Db10) transfer functions with reduced precision

 
LP 

theor.
LP

round
LP

binary
HP

theor.
HP

round
HP

binary
HPx

round
-0.0076 -1 1000001 -0.0189 -2 1000010 -2
0.0010 0 0000000 0.1331 15 0001111 17
0.0026 3 0000011 -0.3728 -41 1101001 -48

-0.0208 -2 1000010 0.4868 53 0110111 62
-0.0505 -6 1000110 -0.1988 -22 1010110 -25
0.0658 7 0000111 -0.1767 -19 1010011 -23
0.0901 10 0001010 0.1386 15 0001111 18

-0.1386 -15 1001111 0.0901 10 0001010 12
-0.1767 -19 1010011 -0.0658 -7 1000111 -8
0.1988 22 0010110 -0.0505 -6 1000110 -6
0.4868 53 0110111 0.0208 2 0000010 3
0.3728 41 0101001 0.0026 3 0000011 3
0.1331 15 0001111 0.001 0 0000000 0
0.0189 2 0000010 -0.0076 -1 1000001 -1

Figure 4. Frequency responses of the LP (B, D) and the HP (A, 
C) Daubechies (Db10) filters used in the DWT. The upper plot 

is for the optimal rounding, while the lower for not optimal 
rounding (HPx) of the filter coefficinets. 

Both of the above modes make the realized device a 
powerful  autonomous system, suitable for WBSN. The 
second mode is important in case of the analysis of the 
ECG/EMG  biomedical  signals.  Such  signals  must  be 
first de-noised, and then some characteristic points must 
be extracted from the complexes [18].

Data  preprocessing  is  based  on  the  Finite  Impulse 
Response (FIR) filtering. The Infinite Impulse Response 
(IIR)  filters  were  also  considered,  but  the  FIR  filters 
offer  the  attractive  property  of  linear  phase  response. 
Data extraction is performed by means of a multistage 
discrete wavelet transform (DWT), shown schematically 

in Figure 3. DWT is a series of the filtering operations 
performed by use of the quadrature mirror filter (QMF) 
bank composed of the lowpass, LP(z), and the highpass, 
HP(z),  halfband FIR filters.  Each stage is followed by 
decimation by a factor of 2. 

The problem which must be considered at this stage 
is  data  resolution.  The  analog  input  signals X are 
converted  into  8  –  12  bit  digital  form.  As  mentioned 
above, the proposed device is also used as the hardware 
model of the system that will be realized as an ASIC. In 
such implementations each bit significantly increases the 
number of transistors (and consequently, the chip area), 
and the power dissipation. For this reason data resolution 
has been limited to 16 bits only, and thus the FIR  filter 
coefficients are rounded to 6 bits + 1 bit representing the 
sign, as shown in Table 1 for an example of Daubechies 
wavelet. In this situation the rounding operation must be 
performed  very  carefully  to  avoid  the  loss  of  the 
dynamic range of the filter, as shown in Figure 4. The 
non-optimal HPx case in Table 1 is shown at the bottom 
diagram.  In  this  case  the  rounding  factor  is  even  less 
restrictive, but the loss of the attenuation exceeds 10 dB. 

Data preprocessing is required as it simplifies the in-
put signals provided to the NN, thus making the analysis 
performed by this network feasible. In particular, it mini-
mizes the number of required network inputs, as particu-
lar features are provided to separate inputs. In [19] the 
ECG signals  were decomposed into only four features, 
specifically, the span of the QRS wave, the interval of the 
R-R segment, the voltage and the slope of the S-T seg-
ment. The results obtained in [19] are in the good agree-
ment with the diagnosis made by the medical staff. The 
analysis in [19] was performed using the WTA network. 
The results for the WTA NN were compared with the re-
sults obtained in case of using of the BP network. This 
conclusion is important, as the WTA NN is much simpler 
in the hardware realization than the BP algorithm. 

Summarizing, the realized device enables  operation 
in different modes, with either the L1 or the L2 distance 
measures,  with  or  without  the  conscience  mechanism, 
with different  numbers  of  neurons,  with the analog or 
digital  input  data.  The system is  still  being developed 
and optimized. One of the modules that will be added in 
the next version is the wireless I/O module, to enable the 
application of the device in the WBSN. 

4. LABORATORY TESTS 

One of the important tests was to deterimne the maxi-
mum achievable  data rate.  This  parameter  depends  on 
the number of neurons in the network, since all calcula-
tions inside the µC are preformed serially. This is a dis-
advantage in comparison with the NNs realized as ASIC, 
in which a fully parallel  data processing can be easily 
implemented.  The input data rate  can  be estimated by 
use of the following equation: 

f data n= f max / N O⋅n                  (6)



In (6) fmax is the maximum clock frequency of a given 
µC, equal to 16 MHz and 72 MHz for the AVR and the 
ARM µCs, respectively. The NO parameter is the number 
of the clock cycles per a single input pattern  X, in the 
NN with  n neurons.  The  NO parameter  differs  for  the 
AVR and the ARM µC. The ARM µC is more efficient, 
so although  fmax is in this case only 5 times larger, the 
NN operates more than 7 times faster. The data rate de-
pends on the distance measure, and is approximately two 
times larger for the L1 case, as no squaring / rooting op-
erations are required in this case. This is shown in Figure 
5, as a function of the number of neurons.

Figure 5. Achievable data rate of the WTA NN as a function of 
the number of neurons for both µCs for (top) the AVR, and 

(bottom) the ARM microcontroller. 

Fig. 6 presents selected measurement results of the NN 
with 3 inputs and 4 outputs realized on the ARM µC sam-
pled at 135 kHz. An example adaptation process has been 
presented for two selected neurons. The EN is the output 
signal  of  the WTA block that  determines  the  winning 
neuron, i.e. the neuron the most resembling the input pat-
tern X. Only this neuron can adapt its weights. As can be 
observed, when the EN signal becomes a logical '1', the 
weights of the corresponding neuron are modified. The 
following input signals were provided to the NN: 

x1 – the sine signal with the frequency of 5 kHz;
x2 – the triangular signal with the frequency of 10 kHz 
x3 – the rectangular signal with the frequency of 2 kHz.

Figure 7 illustrates the influence of the conscience mech-
anism on the learning quality of the network. In this case 
data acquired throughout the serial port for the NN with 
10 neurons are shown. The conscience mechanism is able 
to activate the neurons that otherwise would remain inac-
tive. Figure 7 illustrates the influence of dead neurons on 
the mapping properties. In case (a) all neurons are active, 
becoming representatives of particular data classes. Case 

(b) is shown for the “too weak” conscience mechanism. 
In this case the number of dead neurons is smaller than in 
(a), but is not zero. In the worst case (c) only several neu-
rons took part in the competition. 

    

Figure 6. Example measurement results of the WTA NN with 3 
inputs and 4 outputs (4 neurons). The diagrams present 

selected neuron weights, w, as analog signals.

An interesting aspect is the comparison of the NN re-
alized on µC with the analog network realized earlier by 
the authors in the CMOS 180nm technology. The realized 
device consumes an average power of 300 mW and 500 
mW, for the AVR and the ARM µC, respectively. For the 
comparison, the analog WTA network with 12 weights, 
sampled at 1 MHz, dissipated the power of 700 µW, i.e. 
approximately 500 times less than in case of the realiza-
tion on µCs. Taking into account that the sampling fre-
quency is now two times smaller, the analog NN are 1000 
times more efficient.

  
                    (a)                                        (b) 

             

(c) 

Figure 7. Voronoi’s diagrams illustrating the influence of the 
conscience mechanism on the final placement of neurons. De-
pending on the strenght of this mechanism the number of dead 
neurons varies in-between 0 and 70%. Te results are shown for 
the NN with 10 neurons and digital weights transferred to PC. 



5. CONCLUSION AND FURTHER WORK 

A new  implementation  of  the  unsupervised  trained 
Winner Takes All neural network (WTA NN) on micro-
controllers (µC) with the AVR and the ARM cores has 
been  presented.  We realized  a  prototype  testing  board 
with both µC operating either separately or cooperatively. 
In the second case the ARM µC is used in data prepro-
cessing / conditioning, which relies on the finite impulse 
response (FIR) filtering and extraction of useful informa-
tion  from the  input  signals.  The  output  signals  of  the 
ARM µC become training signals provided to the AVR 
µC that in this case performs the WTA classification al-
gorithm. The prospective application of this device is in 
the Wireless Body Sensor Network (WBSN) in an on-
line analysis of the biomedical ECG and the EMG sig-
nals.

The measurement results show that in the comparison 
with the same NN realized on PC, the network realized 
on µC is even 10 times more efficient taking into account 
such parameters as the achievable data rate and the power 
dissipation. On the other hand, such network is even 1000 
times  less  efficient  than  the  same  network  realized  as 
analog chip. The advantage of the proposed realization is 
relatively low cost of a single device and small sizes. 

In future work, the board will be equipped with the 
wireless I/O ports, enabling applications in the wireless 
medical  diagnostics  systems,  serving  as  a  base  station 
acquiring biomedical signals from the sensors. 
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